
 My Adventures with UNIX

 1

Why am I writing this? At least in the case of Unix, it seems that I unwittingly participated in History.
Recently, some of what I’ve read online or seen on YouTube about the early days of Unix has irritated
me. So, I’m writing my version. Caviat: this is my personal account — not backed with research.
Dick Haight — 9/21/2023

Me, circa 1971

(now hard to believe)

I transferred to AT&T Bell Telephone Laboratories (hereafter Bell Labs or BTL) in 1967 as one of
several hundred AT&T Bell System programmers (and managers) who were dumped into Bell Labs to
form BISP – the Business Information Systems Project. We were supposed to solve computer problems
that were common to the 23 Bell System Operating Companies. These projects included computerizing
customer records and billing, inventorying equipment, the white and yellow pages directories, etc. Judge
Green and “The United States v. AT&T” were still in the future. To accommodate this effort a whole
new Bell Labs organization was created.

So how did the existing BTL organizations feel about this? Irritated and slightly degraded, probably. For
one thing the ratio of PhDs to total employees certainly took a hit. I, myself, had a mere BA in English
Lit. After my “lifetime” career in the Michigan Bell Traffic Department was automated away (due to the
introduction of customer direct dialing) in just six years in 1961, I became a programmer simply by
passing the IBM “Programmer’s Aptitude Test” – just a bit easier than the not-yet-invented university
degree in Computer Science.

Bell Labs Holmdel

Now abandoned, weeds in the parking lot
Corporate planning at its finest

By the time I arrived at Bell Labs Holmdel, NJ, I’d had an exposure to the first three computer
generations: a bit of IBM EAM equipment’s logic board wiring (first generation) followed by extensive
assembly language programming on second generation IBM 1401s and 7074s. And by 1967, I’d also
written assembler, Cobol and PL/1 on IBM 360s and a bit of Algol for the wonderful Burroughs 5500.
Early on in my programming career I’d decided that writing software for other programmers was more
rewarding (and interesting) than the usual drudge of commercial applications. And that, of course, had
caused me to be drafted into BISP and Bell Labs.

 My Adventures with UNIX

 2

IBM 1401

So slow that instruction timing was given in fractions of a millisecond
60 years on I remember all the op-codes

I started at Bell Labs, Holmdel, NJ but I wasn’t at that building very long. Just long enough to get to
know a couple interesting programmers: Robert Wilson (as in the yet-to-be Nobel Prize winners Penzias
and Wilson) and Ralph Griswold (main author of SNOBOL4, my all-time favorite programming lan-
guage but now sadly forgotten). Holmdel had only recently swapped their dual maxed-out IBM 7094s
for System 360s. At that time the program development world was still 99% keypunched cards in, print-
outs back. At Holmdel Labs there was an “expectant programmer’s” waiting room. And if you hung out
there all day you might get a half dozen batch program test shots per day. Twice as many as if you re-
turned to your office. Denizens of the waiting room soon sorted themselves out. The more you were
there the closer you got to the window where listings/dumps/card-decks were returned. The center of the
room was taken up with a half dozen keypunch machines. Wilson and Griswold were top of the pecking
order but I was close.

Penzias and Wilson with their microwave horn

aimed at the beginning of the Universe

Some time that winter BISP outgrew the space at Holmdel and we moved around through temporary
quarters before ending up in an eleven-story new building in Piscataway, NJ where I worked until I
escaped BISP. By 1971, some of the Bell Company people had started moving back to their home
organizations. Another Bell System Traffic Department retread called me one day. My little group had
picked up a reputation as serious hackers — i.e., as programmers who got things done regardless. So,
this Jersey Bell Traffic guy asked me if I could change a Digital Equipment Corporation PDP-11 BASIC
compiler so that in place of printing results it punched out paper tape (so telephone circuit usage results
could be collected and summarized later). Apparently, this was OK by his DEC salesman, but he
couldn’t do it himself. I called that sales guy. He gave me the assembler source for BASIC on magnetic
tape and the executable program on paper tape. I asked, “Where can I compile it?” The DEC guy said,

 My Adventures with UNIX

 3

“You could try Ken Thompson. He just got a big new PDP-11.” Ken was in the real Bell Labs –
“Research,” organization number 1200-something. So, I called Ken and he told me that I couldn’t
assemble the DEC code on his machine because he wasn’t using byte-one of DEC’s official software.
Wow. Shocking! I’d never considered totally cutting loose from vendor software. This could have been
the end of this story but Thompson next said, “However, if you like to play around on our new UNIX
system I’ll give you a login.” Why not. I was familiar with IBM’s ugly and inefficient TSO (time-
sharing option) and had used the UNIVAC-1108 Demand offering extensively. In fact, I’d written a little
UNIVAC utility that simplified batch job submission. It was more popular with the 200 or so
programmers than with the comp center people who complained that was executed more often than any
other program. BTW: we did fix the Traffic guy’s problem: by physically splicing in the paper tape
binary code for PUNCH-TAPE in place of the code for PRINT.

My next day’s company mail contained a Unix V1.0? manual – a half inch thick, Xeroxed output printed
by a Teletype Model 37 terminal (upper and lower-case, all the special characters eventually used in C
Language, 15 CPS). I went looking for my own TTY-37. Found one, seemed unused, midnight
requisitioned it. It was so heavy I needed a dolly to move it. Read the Unix manual (20 minutes?). I
dialed up, logged in and was hooked in another 20 minutes—à la St. Paul’s vision (fit?) on the road to
Damascus. I’m not exaggerating. I knew plenty about how not to do the time-sharing interface – so I
could appreciate something way superior when I tried it.

Thompson’s “boss”1 in Research was Doug McIlroy. I’d known McIlroy for a few years. I’d been
nominated as the BISP (sacrificial) interface person to Research – in case they produced something
practical that BISP could use. During that time, I had done Doug a small favor. He knew that I ran short
seminars/talks for BISP programmers when I had a topic. They were scheduled Fridays at 2:00PM.
McIlroy suggested that he would appreciate having his co-worker, Richard Hamming (Turing Award,
everything short of the Nobel), invited to talk at a few of my seminars. Hamming was rightly famous for
inventing the computer error correcting codes without which our current cell phones and the Internet
could not exist2. However, these accomplishments were in the past.

Richard Hamming — with signature loud sport coat

In that present, Hamming liked to drop in on other still-productive researchers and spend a few hours
describing his past glories. My suggested assignment from McIlroy was to distract Hamming
occasionally. To be fair to Hamming, his stories were very interesting if you were hearing them for the
first time. So, I got to know Richard. He came to one of my talks. He suggested topics. From then on,
my plan went like this: around 11AM I’d drive to Murray Hill (home of the real, sincere Bell Labs), pick

1 Ken could be steered to a certain extent but bossed or supervised — unlikely.
2 It was the moment for error correction. Someone was going to invent it. Note: this was the age of the Vietnam War, the draft
lottery, anti-war sentiment and new BTL hires with long hair and beards, t-shirts and jeans. Richard was an unhappy hawk.

 My Adventures with UNIX

 4

up Hamming and take him for a long, two-martini lunch, then on to my seminar room for his talk. My
minions made sure that he had a decent audience. After that I’d fill another hour about what my group
was working on (E.g., at that time we were developing a programming language called Snoflake – a
compiled-out subset of SNOBOL4 that could be linked to Cobol programs). Then I took Richard back to
Murray Hill just too late to do anything but drive himself home. I did this three or four times. I forget.
Anyway, this may have had something to do with me being welcomed into the Unix world. Or not.

Background on the birth of Unix. Again, just my recollection.
Bell Labs had been in a 3-way 1960s development effort between the U.S. Government (military?),
General Electric3 (the presumed computer vendor) and BTL. The project was called Multix (implying
multiple processors). Development being done on a GE-635 (an IBM-7094 wannabe) for the mythical
GE-645 (never completed, I think). After a few unproductive (frustrating?) years BTL pulled out4. At
which point (1969) a frustrated BTL programmer, Ken Thompson, wrote Unix V0.0 on an unused
Digital Equipment PDP-9 – sort of. He then convinced the BTL Patent Department5 that he and friends
could provide them with a multi-user computer word-processing system customized for patent
application preparation. Somehow that worked and Thompson got funding to buy a PDP-11/20 to
provide that service. In that version everything was written in assembly language. Thompson seems to
have written the assembler, the Unix kernel, the shell, various utilities, and the ed(1) text editor6. (Ken
must have used the DEC assembler at least long enough to write his assembler.) Joe Ossana wrote the
word processing program roff (“run off”, later nroff and troff). This was Unix V1.0. That’s about
when I got on board. I was warned (by email! — which I’d never heard of before) not to test programs
during Patent Office working hours because system memory was not protected from user program
errors.

Ritchie and Thompson at the original PDP-11/45

posed, neater than usual, in the un-airconditioned attic at Murray Hill

Pretty soon after (late ’71?) the computer was upgraded to a PDP-11/45 with system/user memory
protection! Unix V1.1, I think. Still all assembler. But Denis Ritchie was working on language B. I think
the naming went something like this: Algol60 morphed into CPL (Cambridge [University] Programming
Language), then came a scaled down version: BCPL (Basic CPL, I had tried an IBM-360

3 In those days the U.S. computer business was referred to as “Snow White and the Seven Dwarves.” IBM was Snow White,
the rest were Univac, General Electric, Honeywell, RCA, Burroughs, Digital Equipment and Control Data (maybe NCR: 8th
dwarf?).
4 Again, Anti-Vietnam War sentiment probably played a part in the decision.
5 Bell Labs applied for thousands of patents per year.
6 Note on the short command names: typing on a 1970s Teletype was slow work. Each key had to be depressed, firmly about
a half inch.

 My Adventures with UNIX

 5

implementation. The only data-type was the machine word) and this became B (for short), sort of. For a
while B changed every day. No backward compatibility. Eventually someone (Doug McIlroy?)
suggested it should have a new name and Language C was born7.

During this early period, I got into the habit of dropping by the Unix Lab about every week (BTL-speak:
a “Lab” = any room not an office where work is done). I was tolerated. I was never introduced to
anyone; it took a while to work out the cast of characters. McIlroy and Dennis Ritchie (a kindly
character) might say hi. Otherwise, I was invisible. A note about work habits: these people generally
worked (à la left-over second-gen university culture) at night – the only time a programmer could lay
hands (figuratively) on million+ dollar second generation mainframes. Thompson tended to arrive at
work about 2:00PM. He and friends would have late lunch in the very nice white-tablecloth part of the
Murray Hill dining room. The real work at the Unix Lab didn’t start until around 3:00 and might run all
night.

A memorable drop-in at Unix Lab:
On that particular day, as I arrived, Robert Morris was the center of attention. He was crying tears and
snot (I think) which was dripping through his beard into the type box of his TTY-37. The problem was
the then-current Unix maximum file size: 64k bytes (amazing, eh?). Morris was trying to complete his
desk-calculator program, dc. It turned out that even after segmenting the program as much as possible
the as (assembler) program tried to create a temporary file longer than the magic 64k. At that point
Thompson said something like, “Oh, all right – I’ll add pipes.” Seems to me that the PDP-11 was
rebooted within 30 minutes, pipes worked and the assembler was modified to use them (more
importantly, also the shell). Pipe data was passed between assembler program phases without creating a
file. Problem solved. I assumed that this feature was Ken’s idea, but I happened to say this in front of
McIlroy once and he quickly set me straight that pipes were his idea, not Ken’s. Morris (who did the
encryption for the passwd command) was not amused at me being there. More about him later.

1974: BISP had hundreds of programmers. It took me a while, but I eventually convinced my BISP
management that using Unix systems as cheap time-sharing front ends to the IBM and UNIVAC
mainframes made sense8. My group got the then world’s biggest Unix system: a PDP-11/45, 48k 16-bit
words of core memory, 2 40mb disk drives, 32 serial ports (16 dial up) and a phototypesetter. BISP
programmers edited their programs, submitted mainframe jobs over data links and got their result back
as a file instead of a pile of paper (max file size had been increased). This was instantly popular. I was
soon administering three PDP-11/70s (and growing) – which led me (out of self-preservation) to write
the find(1)and cpio(1) commands to facilitate file back-up. I believe that my find command was

7 The PDP-11 had a lovely instruction set (especially next to the IBM-360). The following instructions copied a character
string from the address pointed to by R1 to that pointed to by R2, incremented both registers and set the condition code to
zero if the character value was zero. All in one 16-bit instruction. Think that affected the C “++” operator?
 COPYCH MVC R1+, R2+
 BNZ COPYCH

8 Ok, it wasn’t just about cheap effective timesharing: There was the “source code control system”. Managers of program-
mers have a never-ending urge to control programmers — not that any of them actually read code. But sccs was much of
why these systems were funded. The resulting Unix package was called “The Programmer’s Workbench”.

 My Adventures with UNIX

 6

the only code in the first official Research Unix software distribution that was not written by someone in
the Research group9.

Beyond BISP: by 1977, there were over 200 distinct Unix-based development projects within BTL and
Western Electric. To serve them a Unix Support Group (USG) of about 20 people (department head, two
supervisors, a secretary plus Members of Technical Staff) had been created within the BTL computer
center organization. USG had 200 systems to maintain and I had four. But a few of those “200” noticed
that I kept my computers more up to date with Research Unix. I had a half-dozen MTS10 working for me
but I mostly did the Unix stuff myself. I had a BTL off-premises phone line and a terminal in my
basement. During evening TV commercials, I ran up and down the stairs doing system “admin”. And
about once a week I copied anything new (all source code of op-system and commands) from Research
Unix to my master PDP-11. This was done between then “fast” 2000-Baud half-duplex modems. I, of
course, used my find and cpio commands to select what had been updated. If worthwhile, I then
compiled everything and rebooted my system. Note, it wasn’t up to Hamming’s standards, but I did a
checksum on the data transfer. When that worked, and I don’t remember it ever failing, the new Unix
would be installed in my other systems over the weekend.

Anyway, after a bit some of the “Supported” USG projects jumped ship and installed my version of the
system. Big surprise, as mentioned, I kept my system up to date as an off-hours hobby – something the
official group couldn’t manage. Of course, they had fractious customers pulling in several directions and
had wounded themselves with paperwork.

Other things I had a hand in:
The day that the struct composite datatype was added to C (1973?), I asked Dennis Ritchie whether
self-referencing struct pointers were allowed. He said yes and I wrote a recursive tree sort11 example
that afternoon. My code is in the first edition Kernighan and Ritchie C language book. I also helped talk
Dennis into adding named bit fields and an escape into assembler to the language. I probably wasn’t the
only one asking. In addition to find and cpio I also added true variables to Thompson’s original shell
(it became known as the Mashey shell — Research went with the Borne shell, instead). I got named
pipes added (called fifo files) and I wrote popen(3) subroutine – to use fifos. Note: Research wrote
tar(1) (short for tape archive), a better (in some ways) version of cpio.

I noticed how quickly tar followed cpio. This suggested to me how I might fix another admin
problem: a power failure or disk drive failure generally meant the loss of open files. I was doing a full
file backup once a week and ran cumulative incremental backups of “important” files every night. I
needed a way to make this automatic, i.e., to arrange for the execution of shell commands to be run off-
hours and on a repeating schedule. I couldn’t get Research interested so I assigned a summer intern to
write such a program. He made a mess of it but by the end of the summer he turned in something that

9 Over the years, I’ve received a lot of complaints about find’s command line syntax. The day I wrote the first version of the
code I emailed it to McIlroy for comment. He liked it but he chose the syntax. BTW: I think that if I got 1¢ for each time find
was executed on all of the Unix and Linux systems for just one week I’d be rich as Bezos.
10 Member of Technical Staff – top grade tech person.
11 I got the idea for this from a film Ken Knowlton made about his L6 programming language. Knowlton was BTL Compu-
ting Research/Holmdel branch rather than Murray Hill Branch (like Penzias, Wilson, Griswold, and London and Reiser—
who added demand paging to VAX Unix which became the basis for Berkley versions). I guess there was history between
these groups. My C comment mentioning Knowlton didn’t make it into the K & R book.

 My Adventures with UNIX

 7

sort of worked. I immediately sent a description and the source code to Ken Thompson. The next day we
had the cron (a.k.a. crontab) program — which was 100 times better and it is part of all of the millions
of Unix and Linux systems to this day. That time I clearly got Ken to do something!

What else?
Big surprise, I transferred to the USG. Stayed there until 1981. By then the official Unix work had
become political rather than technical and I was encouraged to move on. This is a whole different story
(and USG became part of the so-called “Unix Wars”).

Back to Robert Morris: In 1977 (plus or minus) I was the first to install a Unix system in a high school. I
used the regulation Research “Academic License” version. Morris complained bitterly about this, sug-
gesting that it would lead to nothing but high-school-aged hackers breaking into Unix systems. Didn’t
happen, but (schadenfreude was invented just for this) in 1988, Morris’s son, Robert T. Morris, Jr., cre-
ated the “Morris Worm” which infected thousands of Unix systems12. Junior was convicted under the
“Computer Fraud and Abuse Act” — got off with a fine, community service and suspended sentence.
Morris senior was by then working on “security” for NASA.

Ken Thompson: Programmer. (not really off the topic)
Toward the end of the ‘70s, in preparation for moving Unix to other machines, all of the Unix manual
Section-1 commands had to be converted from assembly language to C. My group in USG got most of
that chore. I assigned a brand new MS/CS hire to rewrite Ken’s tick-tack-toe (ttt) game. As I recall
Ken’s version was 87 lines of assembler. In an unkind moment, I suggested that the C version should be
shorter, C being a higher level language. I think it took over 200 lines in C.

Here’s my view of Ken’s ability:

And if your ego needed eviscerating, just send him some source code for comment.

12 By then, these were mostly licensed BSD (Berkley [University] Software Distribution) Unix versions running on DEC
VAX or Sun Micro hardware. BSD was the best version of Unix — USG’s unfortunately, lagged behind.

 My Adventures with UNIX

 8

Ken

“One of my most productive days was
Throwing away 1000 lines of code.”

Ken Thompson and computer chess: Thompson occasionally joked that he helped create Unix so he’d
have a productive environment for writing his chess-playing program13. Ultimately, his avocation led to
the creation of the “Belle” chess-playing computer. Thompson wrote the software and his hardware
buddy, Joe Condon, created a chess-move-evaluating hard-wired device that calculated the value of 8
potential chess moves simultaneously.

BTL let Thompson and Belle travel to chess tournaments. Belle won everything for a few years
(until IBM squashed him with “Big Blue”). Ken and Belle flew first class because Belle’s enclosure
was designed to just fit next to him in a first-class seat. This worked well until he was invited to play in
Moscow. This was late USSR times. The only direct flight was by Aeroflot and true to Soviet egalitarian
principals, it offered no first class. So, the only way to get Belle to Russia was as checked luggage. Ken
ok’d that. Someone alert at JFK Customs decided that was a bad idea and confiscated Belle. Thompson
had a fit. He claimed that the only way Belle could hurt anyone would be to drop it on them. I think he
was being naïve. I suspect Belle would have been “lost luggage” for a few days, at least. Further, I sus-
pect that today’s Nvidia graphics processors owe a bit to Belle’s design. Belle itself is now in the Smith-
sonian’s computer collection.

By the late’70s Ken considered Unix finished and moved on to Plan 9. In 1992, according to Rob Pike,
Ken (writing on a diner placemat) developed the UTF-8 multi-byte character encoding scheme. UTF-8
makes the Internet work for the world’s text. IBM generally gets the credit but I knew a committee

13 BTW: one should be careful about things Thompson has said about his motivation. When he said he did the first-try PDP-9
Unix so he could play Spacewar — or that he created the later Unix to have an efficient environment for writing his chess
program: I think those were his responses to repeated, irritating questions from the media (or AT&T management). The
phrase “doesn’t suffer fools gladly” was a nice fit for Ken. Perhaps his worse quip was by naming the Plan 9 operating sys-
tem after a really dumb 1959 scifi movie. INMHO, the world would be in a better place if the Linux/Unix server farms were
running Plan 9.

 My Adventures with UNIX

 9

could never design anything this clever and efficient. Last I checked, Ken was at Google and had a hand
in developing Go language.

Last gasp:
About programming productivity: The second generation/early third generation routine (keypunch, card
deck [don’t drop the cards], listings and core dumps) was bad but the computers were slow and very ex-
pensive. The Unix timesharing model (edit, compile, run; 30 second turn around) was way superior but
not quite as great as I had hoped. The old-old times 2-tests-per-day did eventually produce working pro-
grams. Slow turn-around forced you to fix more than one problem at a time and a fresh paper source list-
ing was helpful (if wasteful).
 Programming tools that sort of worked when most programs were input->compute->output don’t
work as well for programs designed to run forever. And then there are the “exceptions”: the 90% of the
code is about errors that seldom, if ever happen. Languages like Python (where bugs may only be found
when source code is executed) aren’t part of the solution.
 Ah well.

This is probably enough. About me? I went on to work on “interactive video” — much of what’s every-
body’s smart phone now but then the size of a fridge and costing thousands. Lately, I’m into IoT — us-
ing Raspberry Pi, Arduino, etc. Oddly, nearly all of the programmers I’ve known instantly stopped pro-
gramming when they were promoted or when they retired. Not me. ’Can’t leave it alone.

From a viewgraph transparency (remember those?) that I drew for a talk in 1984,

i.e.,shortly before Judge Green dismembered the Bell System
[no wonder it’s yellowed]

